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INTRODUCTION

Service quality (SQ) benchmark mechanisms are common features of modern

utility regulation.  There is broad consensus that such mechanisms are needed to

counterbalance the cost containment incentives generated by performance-based

ratemaking (PBR) and the extended rate freezes that result from merger and restructuring

agreements.  SQ benchmark mechanisms are routinely used in Massachusetts rate freezes

and PBR plans.

Despite their acknowledged importance, SQ benchmark mechanisms have not to

date benefited from the same extensive theoretical and statistical research as have the

cost-related PBR plan provisions.  Absent such work, there remains a real risk that

service quality provisions of PBR plans may not satisfy the just and reasonable standard

for utility regulation.

Several regulatory Commissions have recently initiated generic proceedings on

the design of SQ benchmark mechanisms.  The Massachusetts Department of

Telecommunications and Energy (“the Department”) is currently conducting such a

proceeding, which applies to jurisdictional energy distributors.1  On August 17 of this

year, it issued an Order proposing detailed provisions.

The Department proposes that distributors gather data on various SQ indicators

and corresponding benchmarks. The proposed benchmark for each indicator for each

company is an average of the recent historical values for the indicator for that company.

The amount of annual data currently available for historical benchmark computations

varies by indicator and company, and is in some cases as small as two or three.

The Department proposes to use comparisons between some particular

performance indicators and their corresponding benchmarks as the basis for automatic

revenue adjustments.  Massachusetts law explicitly authorizes revenue penalties for poor

quality performance under PBR plans in an amount up to 2% of a company’s recent

transmission and distribution revenue.  The proposed penalty mechanisms would be

                                                
1 Service Quality Standards, D.T.E. 99-84.
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asymmetric in the sense that penalties could be levied for quality inferior to benchmarks

whereas awards would not be levied for superior quality.

The penalty mechanisms would be non-linear in two respects.  First, “deadbands”

would be established in which quality levels nominally inferior to the benchmark would

not be penalized.  In the words of the Department,

The proposed “deadband” recognizes the existence of normal statistical variations
in service quality data, and provides a measure of protection to companies against
being penalized for random statistical events.

The Department proposes that for each quality measure the deadband be established

“equal to one standard deviation from the specific utility’s historical average

performance.”  The proposed penalty mechanism is also non-linear in that the

relationship between the penalty and the performance comparison is parabolic in a range

bounded by the deadband and the indicator value at which maximum penalties begin.

The maximum penalty would be levied at a quality level two standard deviations from the

mean historical performance.

A group of ten investor-owned local gas distribution companies and five investor-

owned electric distribution companies has retained Pacific Economics Group to review

the methodology proposed by the Department and to determine if that methodology is

appropriate for meeting the Department’s stated objectives.  This paper is the report on

our work to date.  It considers how well-established tools of statistical science can be

used to design SQ benchmark mechanisms.  We devote particular attention to developing

proper statistical methods for the calculation of deadbands.

Here is the plan for our report.  Section 1 reviews the basic components of PBR

benchmarking mechanisms, including those that apply to service quality.  Section 2

introduces key concepts from statistical benchmarking and explains their use in SQ

benchmark mechanism design.  Precedents for statistical benchmarking in service quality

regulation are discussed in Section 3.  Our recommendations for service quality

benchmarking in Massachusetts are presented in Section 4.  A technical appendix

provides the theoretical underpinnings for the discussion.
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1.  PBR BENCHMARKING MECHANISMS

1.1  Benchmarking Basics

A typical PBR benchmark mechanism consists of performance indicators,

performance benchmarks, and an award/penalty mechanism.   Performance indicators are

measurable aspects of the company’s operations that are monitored and evaluated.  These

indicators are variables in the sense that they can assume different values across

companies and from period to period.  Performance benchmarks are the numerical

standards against which indicator values are compared.2

A penalty mechanism automatically adjusts a company’s rates depending on the

comparison of indicator values to the benchmark.3  If the indicator values are inferior to

the benchmark a penalty may be levied.  Indicator values superior to the benchmarks may

result in a reward.  An auxiliary mechanism typically effects an adjustment to the

company’s rates to implement the penalty.

Penalty mechanisms can be applied in many ways.  Penalty rates are commonly

established for each indicator.   A penalty rate determines the magnitude of the penalty

per unit of deviation of the performance indicator and benchmark.  The relationship

between penalties and the deviation of indicators from their benchmark is frequently non-

linear.  For example, different penalty rates may apply for different deviations of the

indicators from their benchmarks.  Most notably, a deadband may exist in which

deviations of indicator values from their benchmarks do not result in penalties.

Principles are needed for the development of PBR benchmark mechanisms.  One

is that a company should not be penalized for inferior performance when its performance

is not inferior.  We will refer to such error as a Type I error.4

                                                
2 The indicators and benchmarks described above are sometimes referred to as metrics and

standards.
3 To streamline the discussion we will speak of award/penalty mechanisms as “penalty

mechanisms” even though rewards may be realized as well as penalties.  We may think of such rewards as
“negative” penalties.

4 There is a related concept called Type II error.  That is the error that would result if the quality
program were not judged to be inferior to the benchmark when it was.
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Avoiding Type I errors is especially crucial when benchmark mechanisms are of

the asymmetric, penalty-only variety.  With symmetric penalty mechanisms, Type I

errors still occur but tend to balance out over time between incorrect determinations of

superior and inferior performance.  The evaluation mechanism is thus, on balance, fair.

With asymmetric mechanisms there are no such offsets and the chance of the mechanism

penalizing companies unfairly over the years is greater.

How might a company be falsely judged to have inferior SQ performance?  To

answer this question, it is important to understand the process by which values for

performance indicators are generated.  Performance indicators depend in part on actions

undertaken by a company and in part on external factors.  External factors are those

factors that affect a company’s operations but are not controlled by company personnel.

Such factors differ across companies, and change over time for each individual

company.  Some are volatile in the sense that they are prone to fluctuations that are hard

to predict.  If benchmark mechanisms do not take account of differences in external

factors between companies and over time the chance of a Type I error increases.

PBR benchmarking can take account of external factors in several ways.  One is

to choose performance indicators in such a way that fluctuations in business conditions

are less likely to lead to Type 1 errors.  An example is to exclude observations for periods

in which there are highly unusual external factors.

Another general approach is to choose benchmarks that reflect the impact of

external factors on indicators.  This is most commonly done by basing benchmarks on a

company’s own historical values of the performance indicators.  This approach ensures

that benchmarks will reflect the typical external factors faced by the company, which

may differ substantially between companies.  However, it will not control for local

fluctuations in external factors around their norms.

External factors can also be accommodated through the design of penalty

mechanisms.  Suppose, by way of example, that the value of a performance indicator for

a company is known to fluctuate over time in a certain range due to changes in external

factors.  If the benchmark is the mean value of this indicator for a recent historical period

it will then be difficult to establish with certainty that indicator values in this range reflect

inferior performance on the part of the company even if the indicator value is nominally
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inferior to the benchmark.  Deadbands can reduce the likelihood of a Type I error due to

fluctuations of indicators within their normal range.

1.2  Application to Distribution Service Quality

These benchmarking basics have a ready application in the design of SQ

provisions of PBR plans.  Service quality is the single most common dimension of

operations subject to benchmark PBR mechanisms. SQ benchmark mechanisms typically

consist of quality indicators, quality benchmarks, and a penalty mechanism.

The risk of a Type I error is substantial in quality benchmarking.  The quality of

energy distribution service is potentially influenced by a number of external factors,

which may be called quality “drivers”.  The list of relevant factors includes weather (e.g.

winds, lightning, extreme heat and cold), vegetation (contact with power lines), the

amount of undergrounding mandated by local authorities, the degree of ruralization in the

territory (typically increasing the exposure of feeders to the elements and lengthening

response times when faults occur), the difficulty of the terrain served, the mix of

residential, commercial, and industrial customers, the incidence of poverty, the

heterogeneity of languages spoken, the rate of growth in the number of customers, the

tendency of customers to relocate, and regulatory changes such as a restructuring of the

industry to promote competition.  These factors vary substantially between distributors

and some are quite volatile.

The level of service quality does not depend solely on quality drivers.  Rather, it

depends on the efficacy of a distributor’s service quality effort.  We may refer to this

informally as quality effort.  A quality effort encompasses quality-related work practices,

worker training, and capital investments.  Relevant work practices include the size of call

center staffing and power line maintenance procedures such as tree trimming.  Relevant

capital investments include the size and sophistication of call center communications

equipment and software.

In developing a quality effort, it is rational from both a shareholder and customer

perspective to balance considerations of cost and quality.  It is generally not cost effective

to have the same quality levels in service territories with markedly different quality

drivers.  For example, few will argue that rural power distributors should have the same

SAIFI numbers as an urban distributor because of the higher cost required.  It is,
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similarly, not in general cost effective for a distributor to hold its quality level constant in

the face of local fluctuations in drivers.  As one example, it is not cost effective to ensure

that power distribution quality remains high even during severe storms.  As another, it is

not cost effective for call centers to be staffed so as to maintain call response quality even

when there is an unusual surge in calls.  As the saying goes, you don’t size a church that

you are building to house the Easter Sunday crowd.

The rational balancing of cost and external factor considerations has the result that

the level of quality provided by distributors varies across companies.  Furthermore,

distribution systems are rationally designed to deliver fluctuating quality levels.  If not

adjusted, indicator values can be especially sensitive to the incidence of extreme

conditions that systems are not designed to accommodate.

Our discussion suggests that fluctuations in the values of quality indicators are

often due to fluctuations in quality drivers rather than change in quality effort.

Differences in indicator values between companies are, analogously, often due to

differences in the drivers they face and not differences in their effort.  Both phenomena

raise the risk of a Type I error in SQ benchmarking.

Suppose, by way of example, that the quality benchmark is the mean of recent

historical values of the quality indicator.  Due to fluctuations in external factors, the

quality of service during a PBR year may then be inferior to that in recent years despite

no change in the company’s quality effort.  Quality benchmark mechanisms should be

designed to reduce Type I error by isolating the change in a company’s quality effort.

All of the methods described above for taking account of external factors can be

used in SQ benchmarking.  Some of these tools are recognized, at least in principle, by

commissions and reflected in the design of SQ benchmark mechanisms.  To begin,

quality indicators in approved plans are often measured in ways that exclude the impact

of unusual quality drivers.  A prime example is that SAIFI and SAIDI indicators typically

exclude outages that occur during periods of major storms.5

SQ benchmarks are, secondly, routinely designed to reflect what is known about

quality drivers and their effect on quality.  This is most commonly done by basing

                                                
5 However, the definition of what constitutes a major storm varies from state to state and can even

vary among utilities within a state.
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benchmarks on company-specific historical indicator values, as the DTE proposes.6  A

distributor’s historical quality norms such as mean values of the indicators for recent

years presumably reflect local quality drivers, which may differ greatly from those facing

other utilities.

Note, however, that SQ benchmarks based on historical averages reflect the

quality drivers only during the years of the historical period.  The drivers operative

during the individual PBR plan years may differ greatly from these norms.  Were utilities

to ensure that they were not improperly penalized for quality inferior to recent averages,

they would then have to upgrade their quality effort to a level superior to that which

generated the benchmark.  This would involve considerable cost which might ultimately

be paid by customers.

External business conditions affecting quality can also be handled through the

design of penalty mechanisms.  This is most commonly achieved in SQ benchmark plans

by the use of deadbands.  Deadbands reduce the likelihood that a reduction in quality due

to more adverse quality drivers is confused with a deterioration of quality effort.  In

placing SQ benchmarking mechanisms on a scientific foundation, a key question is the

proper deadband width to achieve this goal.

                                                
6 Company-specific historic standards are also useful to the extent that the goal of service quality

provisions is to prevent a deterioration of service quality.
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2.  STATISTICAL BENCHMARKING

2.1  General Principles

Well-established statistical methods are available for use in the design of SQ

benchmark mechanisms.  These mechanisms provide two major benefits.  One is the

ability to systematically account for the inherent variation in quality levels due to quality

drivers and thereby better identify change in quality effort and reduce the chance of Type

I errors.  A second benefit is the ability to control the likelihood of a Type I error and

thereby set at a level acceptable to policymakers.  The use of statistics to construct

benchmarks for economic performance indicators is a branch of economic science called

statistical benchmarking.

The use of statistics to design SQ benchmark mechanisms begins by viewing

quality indicators as random variables.  A random variable is a variable whose values are

drawn from a population characterized by a probability distribution.  The value assumed

by the indicator in each period is then viewed as a draw from the population.  A

collection of historical values of an indicator is then a random sample.  By way of

example, SAIDI may be viewed as a random variable that may in a given year and for a

given quality effort assume a range of values depending on the state of quality drivers in

that year.

The distribution of a random variable can be represented mathematically.  The

mathematical formula may contain such parameters as the mean and the standard

deviation of the distribution.  The mean of a quality indicator, which is the expected level

of quality, is a measure of its central tendency.  The actual value of the indicator will

usually differ from its mean.  The standard deviation of an indicator’s distribution

measures its “spread”, that is, the tendency of indicator values to differ from their mean.

We may reasonably posit that the mean of the indicator is a stochastic function of

a set of measurable quality drivers and the level of quality effort.  The expected level of
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quality then differs for each possible set of drivers.7  It will decline if there is a decline in

quality effort.

If we do not measure the relationship between quality indicators and quality

drivers, we may still posit that a quality indicator is a random variable with a mean that is

an unknown function of quality drivers and the level of quality effort.  Actual values of

the indicator may differ from the mean when quality drivers differ from their norms.

We can calculate the mean and standard deviation of a sample of historic values

of a quality indicator.  These statistics, properly called the sample mean and sample

standard deviation, are also random variables in as much as they are calculated from

random variables.  Their values are specific to the external factors in play during the

sample period.  We may view the sample mean and sample standard deviation as

estimates of the true mean and standard deviation of the population.  Statistical theory

permits us to measure the accuracy of these estimates.  For example, the estimates will

typically be more accurate the larger is the size of the sample.

Suppose, now, that we take the difference between the value of a quality indicator

and the sample mean of the indicator for a recent pre-plan historical period.  Our analysis

suggests that this difference accurately compares the level of quality effort before and

after the new plan begins if the net effect of external factors during the plan year is the

same as the net effect of external factors during the sample period.  To the extent that the

net effects of external factors differ before and during the plan, the likelihood of a Type I

error increases.  Intuition suggests that the chance for a Type I error is especially great if

the Company is penalized for a quality level that is inferior to the benchmark but well

within the usual range of fluctuation for that indicator.

Statistical theory can be used to assess whether indicator values during the PBR

period are drawn from the same population as the indicator values used to construct the

benchmark.  Granted some assumptions regarding the distribution of the performance

indicator, we can construct hypothesis tests regarding values of a quality indicator during

the years of a PBR plan.  For example, we can test the hypothesis that its value in a given

                                                
7 The parameters of this function could in principle be estimated using historical data.  The

function could then be used to predict a value for the performance indicator given local values for the
business condition variables in the model.  The research required to develop reliable statistical models of
this kind is, however, very much in its infancy.
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plan year is drawn from the same population as the benchmark.  If it is not, a change in

quality effort may be indicated.

The hypothesis test can take the form of comparing a test statistic to a certain

critical value.  The critical value is determined from what is known about the distribution

of the test statistic and the degree of confidence placed on the hypothesis test.  The

confidence level on which the test statistic is based is the likelihood of a Type I error.

The confidence levels most widely used in statistical research on economic variables are

95% and 99%.

An equivalent and more intuitive approach to hypothesis testing is to examine

whether the value of the indicator during a plan year is bounded by a confidence interval

constructed from the sample mean and the test statistic.  If it is, we cannot reject the

hypothesis that the value is drawn from the same population as the historic sample.  If the

quality level is inferior to the most inferior value in the confidence interval we can

conclude that the difference between the new value and the benchmark is statistically

significant.  In this event, the company’s quality may be deemed to be a significantly

inferior quality performer.

As confidence intervals widen, a determination of significantly superior

performance is less likely.  The formula for the test statistic used to construct the

confidence interval can be examined to determine which factors affect the width of the

interval.  Confidence intervals will be wider the greater is the confidence level assigned

to the hypothesis test, the larger is the sample standard deviation, and the smaller is the

size of the sample from which the estimate of the mean is constructed.8

It is interesting to note how the determinants of a proper confidence interval differ

from the fixed standard deviation approach that the Department proposes for deadband

calculation.  The confidence interval does include the sample standard deviation because

this is highly germane for determining how much quality typically fluctuates around the

mean due, presumably, to fluctuating quality drivers.  The deadband is constructed using

a confidence level since this controls the chance of Type I error.  Confidence interval

                                                
8 In the event that we have posited the mean as a function of measurable business conditions,

statistical theory suggests that the confidence interval will also be wider to the extent that included business
condition variables fail to explain the variation in sampled values and the business conditions faced by the
company  deviate from the mean values of these variables in the sample.
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construction also requires the size of the sample to control for the degree of uncertainty

surrounding our estimates of the mean and standard deviation of the benchmark

population.

An important step in the construction of a hypothesis test for a performance

indicator is the selection of the test statistic.  To the extent that the performance indicator

is normally distributed the “t” test statistic has desirable statistical properties.  Notable

among these is its suitability for small sample sizes.  The t-statistic is one of the most

widely used test statistics in economic research.

Statistical theory can be used to estimate the frequency of Type I error resulting

from a fixed standard deviation approach to deadband construction such as that proposed

by the Department.  This will vary with the size of the sample.  Assuming that the quality

indicator is normally distributed, for example the probability of error if the deadband is

set at one sample standard deviation from the sample mean is 18.3% when ten years of

historical data are available.  The likelihood of Type I error using the Department’s

proposed approach is higher the smaller is the sample size used to calculate the mean.

For a sample of only two historic values, for instance, the likelihood of Type I error is

28.2%.
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3.  PRECEDENTS FOR STATISTICAL BENCHMARKING IN REGULATION

There is ample precedent for the use of statistical benchmarking in SQ regulation.

Most notable are the statistical tests approved for use in telecommunications.  Under the

Telecommunications Act of 1996, regional Bell Operating Companies (BOCs) can enter

in-region, interLATA toll markets if they can demonstrate that they have opened their

traditionally non-competitive local exchange and exchange access markets to competing

carriers.  A key issue in evaluating how far BOCs have gone in opening their markets is

the quality of “wholesale” services provided by the BOCs to competing local exchange

carriers (CLECs).

Verizon, an incumbent local exchange carrier and regional Bell Operating

Company (BOC), filed for authorization to provide interLATA long distance service in

Massachusetts and New York State.9  It proposed similar comprehensive performance

enforcement mechanisms in these states that would be activated were the company

authorized by the Federal Communications Commission (FCC) to provide in region inter

LATA services.  The mechanisms were approved by the New York Public Service

Commission (NYPSC) and the Massachusetts DTE.

The approved mechanisms include Performance Assurance Plans (“PAPs”) that

feature an automatic process under which CLECs receive bill credits in the event that

Verizon fails to satisfy predetermined quality standards established for a large number of

indicators.10  A typical benchmark mechanism compares the quality of service offered by

Verizon to CLECs to the quality contained in Verizon’s retail services.  The Verizon

enforcement mechanism for New York and Massachusetts relies heavily on formal

hypothesis tests that involve test statistics.  The methodology was developed through a

collaborative process that included the affected customers (CLECs) as well as Verizon.

The test statistics used to construct the confidence intervals vary with the nature

of the performance indicator.  A t statistic is used for many indicators for which the

sample size is less than thirty.  The chosen confidence level is 95%.

                                                
9 The Verizon operating unit in New York State was then called Bell Atlantic-New York.
10 See NYPSC Case 97-C-0139 (November 3, 1999) and Massachusetts DTE 99-271 (September

5, 2000).
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In its order approving the PAP, the NYPSC acknowledges the role that hypothesis

testing can play in deadband calculation.  It states that, “the PAP was designed…to

produce minimum…scores that provide a 95% level of confidence that BA-NY will not

be unfairly held accountable for substandard scores that result from random variation.”11

The NYPSC also acknowledges that an asymmetric penalty-only mechanism

increases the importance of controls for Type I error, stating that

The objective of the PAP’s statistical framework was to not hold BA-NY
responsible for random variation given that the company is not rewarded for its
good service.12

The Department has also endorsed the general approach to deadband

determination contained in the Verizon plan.  In its order approving the PAP for

Massachusetts states that

The Department finds that adopting and maintaining a 95% confidence interval
protects carriers from any likelihood of financial consequences for peer
performance… A 95 percent confidence level is generally accepted as an
adequate statistical standard.13

The FCC, long a PBR innovator, has since authorized Verizon to commence

interLATA service in New York.14 15  This was the first such authorization it granted.  In

its order, the FCC cites the enforcement mechanism as key evidence that Verizon has

opened its system to competition.16

The FCC decision for New York includes an extensive discussion of the statistical

methodology in the plan.  It acknowledges that “random factors outside the control of the

                                                
11 See NYPC’s op cit p16.
12 ibid p17.
13 DTE 99-271 (September 5, 2000) p26.
14 Verizon’s petition for Massachusetts is pending with the FCC.  Application by Verizon New

England, Inc., Bell Atlantic Communications, Inc. (d/b/a Verizon Long Distance), NYNEX Long Distance
Company (d/b/a Verizon Enterprise Solutions), and Verizon Global Networks, Inc., for Authorization
Under Section 271 of the Telecommunications Act of 1996 to Provide In-Region, InterLATA Services in
Massachusetts, CC Docket No. 00-176.

15 Memorandum Opinion and Order in the Matter of Application by Bell Atlantic New York for
Authorization Under Section 271 of the Communications Act to Provide In-Region InterLATA Service in
the State of New York, CC Docket No, 99-295, December 22, 1999, p. 212.

16 “We find that the performance monitoring and enforcement mechanisms in place in New York,
in combination with other factors, provide strong assurance that the local market will remain open after
Bell Atlantic receives section 271 approval.”
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BOC” influence the values of performance indicators and could cause an indicator to

assume a value inferior to the benchmark even though its quality effort is equally

effective.  Because of such factors, the FCC states that “the use of statistical analysis to

take account of random variation in the metrics is desirable.”17  The FCC explains that

statistical analysis involves the treatment of performance indicators as random variables.

In the Commission’s words,

Statisticians would say that the [performance indicator] observations are a sample
taken from the population.  The population is the theoretical set of values obtained
if an infinite number of observations were taken of the underlying process.
Therefore the population mean is the theoretical mean produced by the process,
while the sample mean is the measured mean.18

The appropriate application of statistical theory to the construction of deadbands

would involve hypothesis tests based on test statistics.  The FCC explicitly approved the

use of a t statistic to construct confidence intervals for small sample sizes.19  It also

approved the use of a 95% confidence level for the determination of statistical

significance.  In other words, the FCC assumed that the quality of a service dimension

covered by an indicator is satisfactory unless the indicator value is significantly different

from the benchmark value using a hypothesis test based on a t-stat (or other appropriate

test statistic) and a 95% confidence interval.  The FCC states that,

We use the 95% confidence interval because it is a commonly used standard, and
because it gives us a reasonable chance of detecting variations in performance not
due to random chance, with few false conclusions that variations are not due to
random chance.

This general approach to carrier-to-carrier service quality regulation is now

spreading to states outside the northeast.  The FCC has now authorized Southwestern Bell

Telephone (SWBT) to provide interLATA service in Texas.20  The SWBT application

includes a Performance Remedy Plan that was previously approved by the Public Utility

                                                
17 FCC op cit Appendix B.
18 ibid Appendix B.
19 According to the FCC decision, no commenter in the FCC proceeding opposed the use of the

Verizon test statistics.
20 Memorandum Opinion and Order in the Matter of Application by SBC Communications etal

Pursuant to Section 271 of the Telecommunications Act of 1996 to Provide In-Region, InterLATA Services
in Texas, CC Docket No. 00-65 (June 30, 2000).
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Commission of Texas.  That plan features a number of mechanisms for benchmarking the

quality of service provided by Southwestern Bell to CLECs and for exacting penalties as

appropriate.

As in the Verizon plan, the mechanisms involve hypothesis tests based on test

statistics and thus are equivalent to using deadbands based on confidence intervals

constructed from the test statistics.  A 95% confidence level is employed.  Once again,

the test statistics evolved from a collaborative process in which SWBT and the CLECs

both had input.  The test statistics employed depend on the character of the indicator and

the size of the sample available.

Other states that have not yet adopted rigorous statistical benchmarking

procedures for service quality have considered a fixed standard deviation approach for

the establishment of service quality standards and have opted for a broader deadband than

that proposed by the DTE.  A case in point is Pennsylvania where the Public Utility

Commission (PAPUC) has issued a rulemaking on reliability of electric service.  It has

fixed deadbands at two standard deviations from the sample mean, reasoning that

This methodology will produce reasonable and realistically achievable initial
minimum performance standards which reflect the variability of historic
reliability performance.21

                                                
21 Final Order, Docket No. M-00991220, 29 April 1999.
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4.  SERVICE QUALITY BENCHMARKING RECOMMENDATIONS

In light of this discussion, we recommend the following general guidelines for the

development of more scientific SQ benchmark mechanisms in Massachusetts.

1. Each penalty mechanism should incorporate a deadband based on a confidence

interval.  We propose that confidence intervals be calculated using t-statistics.  As

we have seen, these are useful in samples of small size.  Deadbands based on a

confidence interval constructed from the t-statistic will reflect the standard

deviation of the data used in benchmark construction, as in the Department’s

proposal.  Unlike the Department’s mechanism, it will also adjust automatically

for the size of the sample and the desired confidence level.  A deadband so

designed will lead to penalties only if a distributor’s quality is significantly

inferior at the chosen confidence level.  A sensible deadband would allow for a

5% probability of Type I error, as in the Performance Assurance Plans approved

by this Department, the NYPSC, and the FCC for Verizon.

2. Care must be taken to develop samples of adequate size for hypothesis testing.

One means of achieving this is to recompute the sample mean benchmarks

routinely as new data are accumulated until samples of adequate size are realized.

Consideration should also be paid to postponing the activation of penalty

mechanisms when samples of minimally acceptable size are unavailable.  For

example, there exists strong theoretical arguments suggesting a minimum of three

and possibly four sample points are needed to establish a valid deadband.

3. Performance indicators are more likely to assume a normal distribution when the

underlying data are normalized to exclude identifiable business conditions, such

as severe weather, which are known to lead to asymmetrically distributed quality

outliers.  Exclusion of outliers should also be considered for customer service

measures.  For example, we might throw out call center observations for periods
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of severe storms or unusually large call demand.

4. With regard to the penalty mechanism, we propose to modify the Department’s

proposed parabolic mechanism such that the standard deviation is replaced by the

width of the confidence interval as the basis for deadband construction.  The

proposed formula22 is

Penalty Maximum
Interval Confidence

Result Average HistoricalResult Observed
0.25Penalty

2

⋅
















 −=

The Technical Appendix presents an application of the recommended procedures

to the case of a single quality indicator: the lost time due to accidents at Boston

Gas.  The company has 10 years of data on this indicator.  The mean value of the

indicator is 1.587.  The sample standard deviation is 0.656, while two standard

deviations is 1.312.  Using the Department’s single standard deviation approach,

the upper band on the deadband is 2.243.  The maximum penalty is incurred at

2.899.  Using the alternative statistical benchmarking approach, and a t-statistic,

the upper bound on the deadband is 2.848.  The value where the maximum

penalty is incurred is 3.528.

5. To further reduce the risk of Type I error the penalty mechanism can be modified

by basing penalties on each company’s net quality performance over a multi-year

period.  Under the current proposal, the companies are never rewarded but are

subject to penalties in any year that performance on an indicator falls below the

lower band.  The plan can be modified to allow for the “banking” of significantly

superior performance in any given year to offset findings of significantly inferior

performance in other years.  The company is then penalized only if its

performance is significantly inferior on balance.  For example, each company can

be judged ultimately on its performance over the full five year period of the PBR

plan rather than year by year.  Even if no awards are offered for performance that

is on balance superior, this will improve the fairness of the plan by creating the

chance to offset penalties attributable to Type I error.
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TECHNICAL APPENDIX

In service quality benchmark mechanisms, a penalty due to year-to-year

fluctuations in external factors is an example of what statisticians’ term “Type I” error.

The Type I error can be illustrated by considering a person on trial for murder.  In this

case, a Type I error would occur if a person were convicted of a murder they did not

commit.  Although decreasing Type I error would cause an increase in Type II error,

namely the probability of allowing a guilty person to be acquitted, philosophies of

jurisprudence as well as conventions in hypothesis testing from the theory of statistics

suggest that maintaining a very low Type I error is preferable.23

The purpose of this appendix is to provide an assessment of the Type I error

associated with various penalty mechanisms.  We begin by discussing the general

framework for evaluating Type I errors for a penalty mechanism when a benchmark

based on the utility’s historical performance is used.  Next, we assess the level of Type I

error associated with the one standard deviation approach for establishing the “deadband”

as proposed in D.T.E. order 99-84.  We then propose an alternative “test statistic”

approach to determining a deadband based on the concept of a confidence interval for an

out-of-sample forecast.  Finally, we illustrate by way of an example how a deadband is

computed using the test statistic approach.

Framework for the Analysis

We start by letting Q denote a particular quality indicator.  We suppose that the

realized as well as the yet to be realized values of Q represent independent draws from an

identical population having a normal distribution with mean µ and variance σ2.  We

denote this distribution by ( )2,σµN .

                                                                                                                                                
22 Penalty does not apply until the utility exceeds the bounds of the deadband.
23 We will not argue here as to the “correct” level of type I error that is “fair” but only say that in

statistics probabilities with magnitudes of 10%, 5% or 1% are most common.  There is also ample
precedence in opinions and decisions made by State Regulatory Commissions suggesting a 5% level type I
error for determining deadbands.
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For ease of exposition we will model this random variable by letting Q = µ + ε

where ε denotes the (unobservable) error term capturing the year-to-year fluctuations in

external factors that are beyond the company’s control.  This random error is assumed to

have a standard normal distribution, which we denote by N(0, σ2).  Since external factor

are deemed unobservable variables in the present setting, the error term can be viewed as

being driven by the net effect of all such variables from their normal values.  The

presence of those unobservable drivers may lead to systematic variation in ε and hence

violate the normality assumption for ε.  We set aside this potential complication until

later in the discussion.

The focus of this discussion is the difference between the historical average

benchmark for a and its future realization, Q.  This average historical benchmark, or

sample mean, for measured metrics is defined to be the sum of the observations divided

by the number of observations, or sample size, T.24  Therefore, the level of Type I error

of interest is simply the probability of the out-of-sample forecast error given by (Q- µ̂ )

taking on values beyond some proposed value for its deadband.  To compute this

probability will require some technical details contained in the following lemma.25

Lemma  Assuming the random sample given by (Q1, …, QT) and the yet to be realized

random variable Q are draws from the population N(µ, σ2)26, the following statements are

true.

(i)  ( )TN
2

,~ˆ σµµ  where t

T

t

Q
T

∑
=

=
1

1µ̂

                                                

24 Mathematically, if we denote the sample mean by µ̂  then tQ
T

∑= 1µ̂ .

25 The authors upon request will provide proofs of these results.
26 The assumption of normality is maintained throughout this appendix.  Given the small size of

the samples involved, it is not feasible to test this assumption.  Should the companies sometime in the
future, when a larger sample size is available, find that their data suggest the assumption of normality
inappropriate, alternatives to the procedures discussed here can be considered.
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(ii)  [ ] 2
2ˆ σσ =E  where 
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σ

(iii)  [ ] 0ˆ =− µQE

(iv)  ( )
T

Q
2

2ˆvar
σσµ +=−

Statements (i) and (ii) are the standard properties for the sample mean and

variance.  Statement (iii) says that the sample mean µ̂  provides an unbiased forecast for

Q.  The statement (iv) contains the variance of the forecast error and illustrates the two

sources of uncertainty inherent in any out-of-sample forecast.  The first term σ2

represents the uncertainty in not knowing the future realization of Q.  The second term

T
2σ  represents the variation of the estimated benchmark from its true value µ.

The Standard Deviation Approach

Under the guidelines proposed in D.T.E. 99-84 a utility would incur a penalty if a

particular SQ measure deviates more than one standard deviation above its historical

average.  We will refer to this scheme for establishing a deadband as the “fixed standard

deviation” (SD) approach.  The Type I error associated with this rule is given in the

following proposition.

Proposition 1:  Assuming the random sample given by (Q1, …, QT) and the yet to be

realized random variable Q are draws from the population N(µ, σ2)27, it follows that

( ) 





+

>=+>
1

ˆˆ
T

T
tPQP σµ  where t is a random variable having a student-t

distribution with (T-1) degrees of freedom.

                                                
27 See footnote 24.
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Two remarks about the level of Type I error imposed on the utilities are in order.

The first concerns the magnitudes established under the proposed guidelines.  For

example, for a utility with ten years of historical data (i.e. the sample size proposed in the

plan), the probability that Q is more than one standard deviation above its sample mean is

the area under the curve of a student-t distribution (with nine degrees of freedom) to the

right of the value 0.95.  Using statistical software28 that contains cumulative distribution

functions we compute the level of Type I error to be 18.3%.  The second more striking

remark is that the level of Type I error increases as sample size (T) decreases.  This is a

result of the increased uncertainty of whether or not the estimated sample mean is close

to its actual counterpart (i.e. µ).  For example, the level of Type I error when the number

of available historical data is five years rises to 20.7%.  For a utility with the minimum

two years of data the level of Type I error is 28.2%.

Test-Statistic Approach

An alternative and more scientific approach to establishing a deadband can be

developed based on the concept of hypothesis testing that is firmly ground in the theories

of probability and statistics.  This approach assumes that an acceptable frequency of Type

I error (say α) has already been established.  It then determines the appropriate value for

the deadband taking into account the number of years of historical data a utility has

available for a particular SQ measure.  The formula for this deadband is provided by the

following proposition.

Proposition 2:  Assuming the random sample given by (Q1, …, QT) and the yet to be

realized random variable Q are draws from the population N(µ, σ2)29, it follows that

ασµ α =





++>

T
tQP

1
1ˆˆ  where tα is the value of the abscissa obtained from a student-

t distribution with (T-1) degrees of freedom.

                                                
28 The Pacific Economics Group uses the mathematical and statistical software package Gauss-

386i, a product of Aptech Systems, Inc.
29 See footnote 24.
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Two comments are again in order.  First, this approach allows the level of Type I

error to be controlled regardless of the amount of historical data (i.e. sample size T) a

utility has available.  This is accomplished by increasing the deadband for indicators with

fewer observations.  Thus, for example, an indicator for which there are two years of

historical data30 will have a deadband more than three and a half times that of an indicator

for which there are ten years of data, everything else held constant.  The rationale is

straightforward.  Since there is less reliability in the sample mean as an estimator of the

true population mean, a larger deadband must be set to compensate for this increased

uncertainty.

Second, the deadband given in proposition 2 includes the deadband given in the

fixed SD approach as a special case.  To see this we must choose a 15.9% level of Type I

error so that tα takes on a value one.  Then we must assume that the sample of historical

data becomes that of the underlying population in the sense of letting the sample size T

increase without limit.  In this very unrealistic scenario, the deadband in proposition 2

reduces to the deadband in the SD approach.

An Example Computing Deadbands and Upper Band

We use the following data for the Safety Performance measure Lost work time

due to accidents to illustrate by way of an example how a deadband is computed using

the test-statistic approach.  We also compute the upper band at which point a penalty

would be imposed on a utility if a particular service quality (SQ) indicator exceeds the

value of this upper band in some future year.  For purpose of comparison we will also

compute the values for these same measures using the standard deviation approach.

Table 1

Lost Work-Time Accident Rate

Year 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991

Q 1.32 1.07 1.08 1.50 0.70 1.10 2.60 2.30 1.80 2.40

                                                
30 It should be noted that this test statistic may be inappropriate for sample sizes smaller than four

since the first two months do not exist for a sample size of two and the second moment does not exist for a
sample size of three.
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Source:  Boston Gas Historical Data
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Using the data found in Table 1 we compute the following values:

Sample size (T):  10
Sample mean ( )µ̂ :  1.587

Sample standard deviation ( )σ̂ :  0.656

Using the following Table we find the value for a level of Type I error of 5% (i.e.

α = .05) and sample size ten (i.e. T = 10) of the abscissas from a student-t distribution to

equal 1.833.

Table 2

Abscissas from t-Distribution for a given level of Type I error α and sample size T.

T31 t.05 t.01

2 6.314 31.821

3 2.920 6.965

4 2.353 4.541

5 2.132 3.747

6 2.015 3.365

7 1.943 3.143

8 1.895 2.998

9 1.860 2.896

10 1.833 2.821

Source:  This table is based on Table 12 of Biometrika Tables for Staticitians. Volume I, edited by
E. S. Pearson and H. O. Harley (1970).

Using the above information we begin by computing the value of the upper band

using the standard deviation approach and find it to be ( )σµ ˆˆ +  = 1.587 + 0.656 = 2.243.

We next compute value of the width of the deadband (DB) using the test-statistic

approach: DB = 
T

t
1

1ˆ05. +⋅⋅σ  = (1.833)(0.656)(1.049) = 1.261.  The upper band using

this approach is then found to be ( µ̂  + DB ) = 1.587 + 1.261 = 2.848.

                                                
31 The given value for sample size T corresponds to (T-1) degrees of freedom.
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Using the value for the deadband under the test-statistic approach computed

above, we note that none of the observed values of the measures in the sample exceed the

historical mean (i.e. 1.587) by more than the deadband.  That is, none of the observed

values in the sample exceed the value of the upper band 2.848.  On the other hand, under

the standard deviation approach, the observed measures exceed the computed value of the

upper band of 2.243 three out of the ten years.

A second (hypothetical) example illustrates the effect of using a smaller sample

on the size of the deadband, everything else held constant.  To this end, suppose T = 2

while the sample mean and standard deviation continue to take the values µ̂  = 1.587 and

σ̂  =  0.656, respectively.  From Table 2 we see that 05.t  now takes the value 6.314.

Computing the deadband for this smaller sample size we find it has now increased to DB

= 
T

t
1

1ˆ05. +⋅⋅σ  = (6.314)(0.656)(1.225) = 5.074 or more than four times its magnitude

when the sample size was ten.
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